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A theoretical and numerical investigation of fluid flow and temperature fields within a 
fluid reservoir subjected to intermittent heating and cooling from the top is presented. 
Using known Rayleigh-Brnard-type problem stability criteria, a theory is developed to 
determine an approximate sufficient condition for the onset of convection within the 
reservoir under time-periodic heating/cooling process. Theoretical prediction of critical 
heat pulsating frequency, beyond which onset of convection is guaranteed, is confirmed 
by numerical experiments considering a square-cross-section water-filled reservoir, with 
the heat-flux-based Rayleigh number varying from 103 to 8 × 10 s. 
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Introduction 

Understanding and predicting the effects of time-dependent 
heat transfer processes within bodies of water is of fundamental 
importance (Imberger 1985). Water flow within natural systems 
such as lakes and ponds is affected by several time-dependent 
heat transfer processes. Surface cooling by evaporation (or 
heating by condensation), for instance, depends upon the 
thermodynamic state and the speed of air that circulates above 
it, both time-varying conditions. Solar radiation is another 
time-dependent heat transfer process, in this case of 
intermittent type (diurnal cycle). 

Migration and dissolution of pollutants within water 
reservoirs (waste water) can be changed drastically by 
convective currents induced during heating or cooling 
(Trevisan and Bejan 1986). The same is true regarding the 
variation of two fundamental parameters for control of fish 
growth and rate of fish breeding, namely, concentration of 
nutrients and water temperature (Ferreira et al. 1992). 

The majority of publications examining the effects of 
time-dependent boundary conditions considered simple func- 
tions. For instance, the cooling of a fluid within a cavity with 
decreasing vertical wall temperature was investigated by 
Vasseur and Robillard (1982). The Rayleigh-Brnard problem, 
with linear heat-flux increase, was studied by Ahlers et al. 
(1981). The same problem, with temperature increasing linearly 
with time, was solved by Kaviany (1984) and extended later 
on, with the inclusion of solute concentration gradients, by 
Kaviany and Vogel (1986). 

More complex configurations, where the thermal boundary 
conditions are oscillatory in time, have been studied only very 
recently. Natural convection flow within a rectangular 
enclosure subjected to oscillatory vertical temperature heating 
was studied by Yang et al. (1989) and by Kazmierkzak and 
Chinoda (1992). Mantle et al. (1992) reported experimental 
results for a shallow rectangular enclosure heated periodically 
from the bottom and cooled at constant temperature from the 
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top. The existence of flow resonance within an enclosure 
subjected to time-oscillatory horizontal heat flux was 
investigated by Lage and Bejan (1993). 

The present study investigates numerically the time evolution 
of flow and temperature fields within an insulated fluid 
reservoir heated and cooled periodically from the top. A 
preliminary theoretical analysis, based upon results of similar 
Rayleigh-Brnard problems, is developed to determine a 
sufficient condition for the onset of convection within the 
reservoir. This condition can be used to tune in the 
heat-pulsating frequency for inducting convection within the 
reservoir. 

Mathematical model 

The physical system is shown in Figure 1. Initially, the reservoir 
contains isothermal still fluid at T 0. At a certain time, 
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oscillatory heat flux, mimicking a step-like function intercalat- 
ing periods of constant heating with periods of constant 
cooling, is imposed uniformly at the top surface. For a 
Newtonian fluid with constant properties (except density in the 
buoyancy term), the nondimensional time-dependent conserva- 
tion equations of mass, momentum, and energy are, 
respectively, 

~U ~V 
- - + - - = 0  (1) 
3X ~Y 

DU ~P / Pr", 1/2 
-- [-~ ) V2U (2) 

Dr c~ X Raa 

Dv (Pr'72 
- + V2V + 0 (3) 

Dz ~Y \ R a /  

DO 1 
VZO (4) 

Dr - (RaPr) 1// 

Nondimensional variables and parameters in Equations 1 to 4 
and Figure 1 are 

ix.v) (u, V) ~(RaPr) 1/z 
(X, Y) ~ (U, V) = H '  ~ , r -  H ~ t ,  

(RaPr)l/2 

T - T O v H 2 (p + pgy) 9flq'~H* 
0 -  P r =  , P -  , R a - - - ,  

q m ( H l '  ct p~2 RaPr ctvk 

Q,, q" 
= qm-~-'' (~)la, ~")e) = (th, te) ~ (RaPr) 1/2 (5) 

with dimensional quantities defined in the nomenclature. It is 
worth noting at this point that q~ is a positive dummy constant 
used only for nondimensionalizing q"; consequently, the usual 
heat-flux-based Rayleigh number, Raq, is in fact equal to Q"Ra 
(following the thermodynamic convention Q" < 0 when cooling 
the reservoir). 

In writing Equations 1 to 4, the maximum absolute value of 
the temperature difference (T t - To) is assumed to be smaller 

than 0.4 To, in which case the invoked Oberbeck-Boussinesq 
approximation is reasonably accurate (Frohlich et al. 1992). 

Physical parameters 

Four independent parameters govern the heating process, 
namely, amplitudes Qh and Q~, and periods f~h and f~e (Figure 
1). This investigation is restricted to the case Qh = Q~ = IQ"I 
and f~h = f~e = D. The heat flux frequency is then f = 1/(2f~). 

Heat transfer parameters of interest are the top and bottom 
surface averaged temperatures, respectively, 

fo Jo 0t=  OIr=ldX and 0b= OIr=odX (6) 

and the midheight averaged Nusselt number, 

Nuv qm L -  L - (RaPr )~ZEV0-~  dX (7) 

The top surface averaged Nusselt number is 

Nu t _ qm H _  1 (8) 
T t - - T  0 k 0 I 

Another parameter, important for the detection of fluid motion 
(convection) within the reservoir, is the volume-averaged 
root-mean-square velocity 

1 ~  {q)i.j[U(i,j)2 + V(i,j)2] } (9) ~o= ~ 

where tpi. j, U(i,j), and V(i,j) are, respectively, volume and 
velocities at each node (i,j) within the domain, and 8 is the 
total volume of the reservoir. 

Numerical method 

The finite-volume method, previously applied and validated for 
similar problems (Lage and Bejan 1992; Antohe and Lage 
1993), is used here with the SIMPLE algorithm (Patankar 1980) 

Notation 

d Cooling-front thickness, m 
g Gravity acceleration, m2/s 
H Height of fluid reservoir, m 
k Thermal conductivity, W/mK 
L Width of fluid reservoir, m 
Nu Nusselt number, Equations 7 and 8 
P Pressure, Pa 
Pr Prandtl number, Equation 5 
q" Heat flux, W/m 2 
Q" Nondimensional heat flux, Equation 5 
Ra Rayleigh number, Equation 5 
t Time, s 
T Temperature, K 
u, v Horizontal and vertical 

velocities, m/s 
U, V Nondimensional horizontal and vertical velocities, 

Equation 5 
x, y Horizontal and vertical coordinates, m 
X, Y Nondimensional horizontal and vertical coordinates, 

Equation 5 

Greek 

Ot 

fl 
6 
q),8 
V 

0 
P 
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t) 

symbols 

Thermal diffusivity, m2/s 
Isobaric thermal expansion coefficient, K - t  
Nondimensional cooling-front thickness 
Nondimensional volumes, Equation 9 
Kinematic viscosity, m2/s 
Nondimensional temperature, Equation 5 
Density, kg/m 3 
Nondimensional time, Equation 5 
Root mean square velocity, Equation 9 
Nondimensional time period, Equation 5 

Subscripts 

b Bottom 
c Critical 
e Cooling 
h Heating 
t Top 
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and the QUICK scheme (Leonard 1979). The discretized 
equations are solved using an implicit alternating-direction 
Gauss-Seidel iterative method and the efficient Tri-Diagonal- 
Matrix Thomas algorithm. The time-integration scheme is a 
second-order Crank-Nicholson predictor-corrector method, 
implemented as suggested by Patterson and Armfield (1990). 
The present numerical code is verified also against the results 
reported by Armfield and Patterson (1991). 

Extensive grid accuracy tests are performed, following the 
same basic concepts described in detail by Manole and Lage 
(1992). Several different grid distributions are implemented, 
depending on the case. Considering Ra~ = 8 x l0 s and Pr = 7, 
for instance, optimum results are obtained with 120 x 120 grid 
lines, nonuniform distribution in the vertical direction, and time 
step equal to 10 -4. A coarser grid with 50 x 50 nodes and time 
step equal to 10 -2 is used for Raq = 103 and the same Prandtl 
number. 

All results reported here are at least 4% accurate considering 
a 20% increase in the total number of grid lines and a 
one-order-of-magnitude decrease in the time step. Attempts to 
resolve flow and temperature fields within this accuracy for 
higher Rayleigh number, e.g., Ra~ = 101°, indicate the need for 
at least 200 nodes, pushing the CPU time to unrealistic values. 
The implementation of a turbulence model might be necessary 
in order to reduce the computation time. 

Theoretical analysis 

In this section, an approximate condition for the initiation of 
convection is derived considering a continuous cooling (from 
the top) process. Notice that although continuously heating the 
enclosure from the top leads to a stable configuration, it is 
shown later on that convection can be induced by 
heating/cooling the enclosure even when the cycling process 
starts with heating. 

During cooling, a cold fluid front develops downwards with 
the top surface temperature decreasing continuously with time. 
During the initial cooling stage, when the heat transfer mode 
is that of conduction, Equation 4 simplifies to 

tg0 1 ~20 
- ( 1 0 )  

~z (RaPr)l/2 ~y2 

An analytical solution of Equation 10, with isothermal initial 
condition, constant heat flux (Q") at Y = 1, and zero heat flux 
(~O/~Y = 0) at Y = 0, was pioneered by Smith (1941). In terms 
of the nondimensional variables listed in Equation 5, the 
solution is 

0 z 3Y 2 -- 1 2 

Q" (RaPr) 1/2 + 6 n2 

X n=~ 1 (--1) n cos(n~Y) F --(nrt)2z 7~ n ~  e x p / ~ / )  (11) 

By evaluating Equation 11 numerically, it is verified that when 
-> Zb, with 

Zb = 0.2(RaPr) 1/2 (12) 

the temperature ratio Or = o/0r = 1 is larger than 0.1, a strong 
evidence that the cooling front has reached the bottom of the 
enclosure. Another important characteristic, as pointed out by 
Brooks (1958), is that when z _> • . . . .  where 

~m,, = 0.4(RaPr) 1/2 (13) 

the summation term of Equation 11 becomes negligible, and 
the temperature difference throughout the cooling layer, 
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(Or = ~ - O r  = o), approaches its maximum value of 0.5 Q" 
within less than 1%. The information contained in Equations 
12 and 13 is essential for studying the critical condition for 
onset of convection within the reservoir, as discussed next. 

Figure 2 presents the space and time evolution of the cooling 
front, Equation 11, considering Ra = 104 and P r =  7, for 
several (Q", ~) pairs. Clearly, the time rate of top temperature 
change is proportional to Q" (compare the pairs: (-0.1,  5), 
( -  1, 5), and ( -  10, 5)). The three lower curves, for Q" = - 10, 
indicate how the cooling front develops in time towards the 
bottom of the reservoir (Y = 0), as indicated by the arrows (a) 
and (b). For a fluid with density dependent only upon 
temperature and positive coefficient of thermal expansion, the 
fluid layer near the top becomes increasingly heavier with time, 
which might lead eventually to an unstable situation. During 
the time evolution of the cooling front, three possibilities exist: 

(1) slow top surface temperature decrease and shallow 
reservoir: an unstable temperature gradient is not achieved, 
so the fluid cools down indefinitely by conduction; 

(2) fast top surface temperature decrease and deep reservoir: 
an unstable gradient is achieved, so convection sets in; 
moving fluid is initially bounded by a rigid surface from the 
top and by a free surface from the bottom; and 

(3) fast top surface temperature decrease and shallow reservoir: 
unstable gradient is achieved, so convection sets in; moving 
fluid is bounded by rigid surfaces. 

It is postulated here that the instability of the cooling layer 
is determined by a local and instantaneous Rayleigh number, 
defined as 

g / ~ ( ~  - T, )d  3 
Ra 6 - (14) 

#V 

with d being the dimensional thickness of the cooling-front 
layer measured from the top, and (T~- Tt) the temperature 
difference across the layer. Note that d varies with time until 
the bottom of the reservoir is reached by the cooling front 
(when d = H) at ~ = Zb (Equation 12). The across-the-layer 
temperature difference, (T~- Tt), then approaches its asymptotic 
maximum value at z = ~m=x (Equation 13). The hypothesis 
behind Equation 14 was mentioned, in passing, by Lick (1965). 

The Rayleigh number of Equation 14 is related to the 
Rayleigh number Ra define in Equation 5, 

Ra6 = (06 - 0t)t~3Ra (15) 

where 6 and (06 -  0t) are, respectively, the nondimensional 
cooling-front layer thickness (6 = d/H) and the nondimensional 
temperature difference across the layer. 
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Expressions for 6 and (0 n - 0 t )  are obtained by writing 
Equation 10 and the heat flux through the top surface in a 
scaling form, respectively, 

(0n - 0,) 1 (0~ - 0,) 
(RaPr)UZ 62 (16) T 

and 

Odv, r= 1 
06 0, 

Q" (17) 
6 

Solving Equation 17 for 6 and substituting the result into 
Equation 15 yields 

(0n - 0 , )  4 
Ran Ra (18) Q,3 

From Equations 16 and 17, the scale for (0n - 0,) is obtained as 

0t - 0n ~ Q"(RaPr)- 1/4.fl/2 (19) 

Eliminating (0n - 0t) by combining Equations 18 and 19, 

Ra~Pr ~ Q,,~z (20) 

Equation 20 correlates total heat flux, Q", and total cooling 
time, ~, with the Boussinesq number equivalent, R%Pr. 

Notice that the time scale for the cooling front to reach the 
bottom of the enclosure can be obtained from Equation 16 by 
imposing 6 = 1. The result, % ~ (RaPr) 1/2, differs only by a 
factor of 0.2 from the theoretical result predicted by Equation 
12. Also, the maximum Ran achievable within the enclosure 
during the cooling process can be obtained by comparing the 
time scale from Equation 20 with ~m,x of Equation 13, 

Ravin.. ~ 0.16Q"Ra (21) 

It is worth noting that the actual heat-flux-based Rayleigh 
number, Ra~, is larger than the maximum-temperature-based 
Rayleigh number, Ranm,. 

The study of time-dependent density gradient instability 
differs from the studies of Rayleigh-B6nard instability 
(Chandrasekhar 1961), where a linear density profile is 
imposed. Nevertheless, a parallel is built in here between the 
two phenomena to obtain an approximated condition for the 
onset of convection. The strategy is very simple: for a certain 
fluid (Pr), using known values of critical Rayleigh number from 
the Rayleigh-B6nard studies in Equation 20, the minimum time 
for onset of convection is obtained for any given heat-flux 
amplitude, Q". 

For a horizontal two-dimensional (2-D) thin-fluid-layer 
system (one that can have the vertical sidewall effect neglected, 
L/H--* oo), Pellew and Southwell (1940) obtained, for a 
rigid-free configuration, a critical-temperature-based Rayleigh 
number equal to 1100.65. This is the case when the convective 
fluid has rigid-free horizontal bounds or, in other words, the 
critical cooling time for onset of convection, ~ ,  is smaller than 
Tb (Equation 12). The effect of vertical walls is expected to be 
minor in this case, especially when 6 is relatively small when 
compared with the height of the enclosure, Y = 1. By setting 
R% ~ 1100.65 in Equation 20, an estimate for the critical time, 
re, for onset of convection is obtained, 

~ 33( Pr ~i/z (22) 
~ \_Q, , /  

provided that the thermal cooling layer does not reach the 
bottom surface, rb > ~.  The minimum period, f~, for the 
cooling process to induce convection, written in terms of critical 
(maximum) frequency, f¢, follows from Equation 22: 

f ~  0.015(-~r")  1/2 (23) 

The analysis is now extended for z > %, in which case the 
convective fluid is bounded by rigid horizontal surfaces. In this 
situation, with 6 = 1, the vertical walls are expected to influence 
the onset of convection. Catton (1972) investigated the viscous 
effect, known to retard the onset of convection, of insulating 
vertical walls for a rigid-rigid horizontal configuration. Table 
1 of his paper presents the critical Rayleigh number for several 
different aspect ratios. The values shown in the last line are 
good approximations for the critical Rayleigh number in a 2-D 
square configuration, namely, Ran = 1 = 2453. It follows from 
Equation 20 that 

~ 50( Pr ~1/2 (24) 
~° \ - Q " I  

and, by consequence, that 

f c - 0 . 0 1 0 ( 7 )  '/2 (25) 

provided % < re. 
Equations 22 and 24 estimate the critical time for the onset 

of convection pending a comparison between the total cooling 
time and the bottom surface temperature time limit. In this 
regard, Foster (1965) had developed a theoretical linear 
stability analysis for a horizontally bounded infinite fluid layer. 
He considered two distinct cases concerning the top surface 
temperature: a step decrease and a linear decrease. He 
concluded, among other things, that for high Rayleigh numbers 
the critical time for the onset of convection is independent of 
the depth of the fluid layer. His conclusion, for the case of 
sudden cooling (constant heat flux), is both put into perspective 
and extended by Equations 12, 22, and 24 of the present 
analysis. 

Based upon the previous analysis, a conservative minimum 
local Rayleigh number, Ran, of 3 x 103 is necessary for the 
onset of convection within the reservoir. According with 
Equation 21, the critical threshold is approximately 

Q"Ra > 1.8 x 10 '~ (26) 

It is now important to recognize the approximate nature of 
Equations 22 and 24. Both equations are related to results 
obtained considering a linear vertical temperature profile 
within the fluid (steady case). The nonlinear temperature 
profiles of Figure 2 suggest that, during transient cooling, a 
fluid layer lighter than the one for a linear temperature profile 
(between the same top and bottom temperatures) is developed. 
It is reasonable to speculate then that the actual critical Ran, 
for time-dependent volumetric cooling, should be slightly 
greater than the ones used in obtaining Equations 22 and 24. 
(In fact, Mahler et al. (1968) estimated for a similar problem 
that the critical Rayleigh number might increase approximately 
two and a half times.) 

Steady cooling results 

Table 1 presents some results for a square enclosure filled with 
water (Pr = 7). The numerical criterion for determining onset 
of convection is the change (more than 0.1%) in the averaged 
top temperature from its conduction profile. 

The underlined z¢ values refer to the most appropriate 
theoretical result, either from Equation 22, if z~(Equation 
22) < %, or from Equation (24), if zc(Equation 22) > %. For 
Ra = 104 and Q" = -0.1,  the numerical simulation indicates 
a stable conductive cooling process. Observe that results from 
both Equations 22 and 24 predict critical times much larger 
than the time for the cooling front to reach the bottom surface 

236 Int. J. Heat and Fluid Flow, Vol. 15, No. 3, June 1994 



(Equation 12). Notice that Q"Ra, in this case equal to 103, is 
smaller than the minimum listed in Equation 26. Also, zm,x 
(Equation 13) is smaller than % from Equation 22 or 24. The 
Q " =  - 2  case is also a situation where the small heat flux 
creates a stable layer for a long period of time, allowing the 
thermal front to reach the bottom of the reservoir. In this case, 
however, the predicted z b and % values have the same order of 
magnitude, with %(Equation 24) agreeing well with the 
numerical result. 

The case Ra = 106 and Q" = -0.01 is peculiar in the sense 
that the % value from Equation 24 is supposedly the 
appropriate value (%(Equation 22)> %), but in fact the 
numerical result agrees better with % from Equation 22. This 
highlights the "scale basis" (approximate) nature of the 
theoretical predictions (in fact, in this case, the convective 
process is initiated before the cooling front reaches the bottom 
of the enclosure, so % is underestimated). The general 

T a b l e  1 C r i t i c a l  t i m e  f o r  o n s e t  o f  c o n v e c t i o n :  c o m p a r i s o n  w i t h  

n u m e r i c a l  r e s u l t s  

Ra z b (eq. 12) - Q "  T c (eq. 22) z c (eq. 24) %-num. 

104 52.9 0.1 276.1 418.3 ao 
2 62.0 93.5 113.0 
4 43.9 66.1 52.0 
6 35.8 54.0 37.4 
8 31.0 46.8 30.3 

18 20.6 31.2 17.1 
10 s 529.1 0.01 873.1 1322.9 849.5 

0.1 276.1 418.3 275.4 
1 87.7 132.3 82.6 
8 31.0 46.8 28.3 

10 s 5291.4 0.01 873.1 1322.9 859.6 
0.1 276.1 418.3 271.5 

2 62.0 93.5 61.4 
8 31.0 46.8 28.8 
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agreement between theory and numerical results is surprisingly 
good considering the simplifications involved. 

Figure 3 shows the time evolution of the surface averaged 
top and bottom temperatures and the midheight averaged 
Nusselt number. For  Ra = 104 and Q" = -0 .1  (Figure 3a), the 
cooling layer is indefinitely stable as indicated in Table 1. This 
observation is anticipated theoretically by recognizing that 
zb < %(Equation 22) < %(Equation 24). For  a larger heat flux, 
as Q" = - 1 0  (Figure 3b), the cooling front evolves as a pure 
conduction layer up to the critical time, zc ~ 25.2, when the 
top temperature starts to increase, indicating an upward flux 
of warm fluid. The initial pure conduction solution for 0, 
(Equation 11) is superimposed (continuous line) on the 
numerical 0t results (dashed line). The growth of disturbances 
after onset of convection is relatively fast as shown by the 
sudden drop of Nuv and subsequent decrease in 0b. 

From the results for Ra = 106 and Ra = 108 (Table 1), it is 
evident that for high Rayleigh number the cooling front 
becomes unstable before reaching the bottom of the reservoir 
(% > zc). In Figure 4a, for Ra = 10 s and Q"=-0.01, the 
system undergoes an initial conduction regime followed by a 
convection regime, z ~ 860, returning to a stable conductive 
cooling process at z ~ 3000 (observe, from Equations 7 and 11, 
that for steady pure conduction, Nu v = Q"/2). This reflects the 
mixing that the first convective burst imposes in the enclosed 
fluid, accelerating the cooling process. 

Results for Q" = - 8  are presented in Figure 4b. The time 
evolution of Nu v indicates a very complex convective flow. One 
interesting feature is the almost uniform decrease in the bottom 
surface temperature. An enlargement of the initial convective 
stage is presented in Figure 5, where it is possible to verify the 
existence of a delay on the Nuv response to the onset of 
convection. This is in agreement with the very small zc, when 
compared with Zb, anticipated by the theoretical analysis (see 
Table 1), indicating a very thin cooling layer at the onset of 
convection. 
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Snapshots of the time evolution of flow and temperature 
fields, for the case depicted in Figure 5, are presented in Figure 
6. Streamlines (left) and isotherms (right) are equally spaced, 
with the former defined as Ou?/dy = U and OW/dX = - V. The 
rotation of the convective cells is indicated by arrows. From 
top to bottom, it is noted that convection starts within regions 
near the corners (~ = 20), with flow cells developing towards 
the center of the reservoir (z = 30). In each half of the domain, 
two cells merge and subdue a third one in between them 
(~ = 35). At the same time, two new cells at the center and one 
at each side of the reservoir are developed. The continuous 
growth of the two center cells fuels the growth of the other 
cells, especially the ones near the side walls (z = 40). The 
thermal convective effect is to produce isotherms with an 
inverted mushroom-like shape in the center of the reservoir, 
and thermal fingers near the side walls. The fingers of cold fluid 
evolve in time, eventually detaching from the top layer as 
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Figure 5 Constant cooling, initial stage: Ra = 108, (7' = - 8  
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Figure 6 Time evolution of 
(right): Ra = 10 8, Q" = - 8  

x :  0 

20 1 

30 

35 

40 

50 
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droplets, explaining why the Nusselt number increases again at 
z = 50. These droplets migrate to the bottom of the reservoir, 
diffusing its thermal energy to the warm fluid. The process 
repeats itself in a less organized manner, resulting in the chaotic 
Nuv profile observed in Figure 4. 

P u l s a t i n g - h e a t  r e s u l t s  

The time scales given by Equations 12, 22, and 24 are used as 
reference for selecting heat-pulsating frequencies for the 
oscillatory process such that convection is induced within the 
reservoir. The graphs in Figures 7a to 7c show, respectively, 
the oscillatory behavior of the system for frequencies f equal 
to 0.025, 0.00625, and 0.00333, for Ra = 108 and Q " =  - 8  
( R a q = - 8  x 108). The corresponding half-period, Q, is 
respectively equal to 20, 80, and 150. 

According to Equation 23, f = 0.025 does not satisfy the 
condition for the onset of convection. However, it is seen from 
Figure 7a that this oscillatory mode induces convection: notice 
the oscillations of Nuv and co. This observation justifies the use 
of the term sufficient condition when the theoretical results, 
obtained for continuous cooling, are used for the analysis of 
the pulsating heat problem. When the criteria are satisfied, 
convection will indeed be induced. However, even when the 
criteria are not satisfied, the onset of convection by pulsating 
heat might occur due to the deformation of the fluid 
temperature profile within the reservoir. 

Figures 7b and 7c, which show smaller frequencies satisfying 
the criteria for onset of convection, demonstrate the importance 
of co for detecting convection. When f = 0.00625 (Figure 7b), 
the response of Nu~ is limited to the first cycle, while the peaks 
in co indicate the existence of convection throughout the 
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oscillatory process. In this case, the convective flow becomes 
restricted to a thin layer near the top of the reservoir, so its 
effect is not captured by Nuv. Note also the asymmetry of 0t, 
indicating the convective effect within the reservoir, namely, 
that of increasing the thermal resistance during the heating 
stage. Notice, beyond the second cycle, that the disturbances 
(convection) grow and decay within each cycle. This basic state 
is termed in the literature (Davis 1976) transiently stable. 

In Figures 7a to 7c, the ~o values are scaled so that Ogma , is 
always equal to 10. The actual maximum values are, 
respectively, equal to 0.0184, 0.05275, 0.05127. Although it is 
not within the scope of the present study to ascertain the precise 
critical state, a suitable stability criterion that can be used for 
the pulsating heat case, considering the numerical constraints, 
is co > 10 -6 .  

Figures 8a to 8c, for Ra = l0 s and Q " = - 0 . 0 1  (Raq = 
- -  106), shows results for frequency 0.0025, 0.00083, and 0.00025 
(half periods of 200, 600, and 2000) respectively. In this case, 
the highest frequency (Figure 8a) does not induce convection, 
confirming the theoretical prediction (Table 1). Figure 8b, with 
half-period equal to 600, is in the periodic convection regime. 
Interestingly, the apparent frequency of convection (Nu v and 
~o pulses) is approximately equal to twice the heating period. 
Finally, the lowest frequency (Figure 8c) promotes the strongest 
convective effect. Observe the waviness in the bottom 
temperature profile, indicating that the cooling front indeed 
reaches the bottom surface periodically due to the convective 
bursts. (In plotting Figure 8, the to values were not scaled.) 

An example of the heating/cooling process starting with 
heating the reservoir is illustrated in Figure 9, for Ra- -  l0 s, 
Q " = - 8 ,  and heating period equal to 120 ( f  =0.00833). 
Again, Table 1 indicates that convection should not set in. 
However, the pulsating effect induces convection within a thin 
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Figure 8 Pulsating heat flux, Ra=108 ,  Q"=-0.01. (a) 
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Figure 9 Pulsating heat flux (heating first), Fla = 108, Q" = -8 ,  
f = 0.0083 

layer near the top surface (notice Nuv = 0). The velocity 09 is 
scaled, having an actual maximum value equal to 0.00562. 

Conclusions 

A preliminary investigation of heat transfer within a fluid 
reservoir heated and cooled from above is performed. A 
theoretical analysis considering a continuously cooling 
transient process, based on results of similar Rayleigh-Brnard 
problems, is developed in order to identify an approximate 
condition for onset of convection. The theoretical predictions 
are confirmed by numerical experiments for several cases. Time 
evolution of streamlines and isotherms indicate the existence 
of very complex flow, unveiling the main characteristics of the 
convective process. 

Using the theoretical results, the maximum frequency of heat 
pulsation that guarantees convective flow is obtained and 
tested numerically. Convection is observed for frequencies 
above the critical frequency, indicating that temperature 
gradient inversion can indeed induce convection. It is 
concluded then that the theoretical critical frequency is only a 
sufficient condition for the onset of convection by pulsating 
heat. 

A suggestion for future research is the investigation of the 
critical state by linear stability analysis, considering the 
theoretical solution for the conduction regime as the basic state. 
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